top of page

Welcome to my website! I am Takahiro Ueda, a postdoctoral researcher at Max-Planck Institute for Astronomy (MPIA) working in the group of Dr. Mario Flock. I have been working on how dust grains grow into planets in protoplanetary disks from both theoretical and observational point of views, with a particular interest in the formation of terrestrial planets. I obtained my Ph.D. at Tokyo Institute of Technology on March 2019 under the supervision of Prof. Shigeru Ida and Prof. Satoshi Okuzumi. After that, I have worked with Prof. Akimasa Kataoka for three years as a JSPS Research Fellow  (PD) at NAOJ.  Since April 2022, I have been at a current position.



Name: UEDA, Takahiro (植田 高啓)

Current Status: Postdoctoral Researcher

Affiliation: Max-Planck Institute for Astronomy

Email: /

Office: 308/3, Königstuhl 17, 69117 Heidelberg


It has been revealed that planets are common around Solar-type stars.

  • How do planets form?

  • Are there other planets similar to our Earth?

  • When and how did life arise on our Earth?

With the goals to answer these questions, I'm working on planet formation through astrophysical numerical simulations and observations.


Formation of Planets

Dust growth is the first step of planet formation. In protoplanetary disks, the birthplace of planets, micron-sized dust particles collide with each other, coagulate into larger bodies, and eventually grow into planets. I'm trying to reveal where and how do planets form from small grains particularly using dust-growth simulations and radiative transfer simulations.


Dust Growth in Protoplanetary Disks


In our solar system, there are many dust grains originating from asteroid collisions and cometary activities. These grains are visible in a clear sky and some of them fall onto our Earth. These grains provide us keys to understand the formation process of fragments and their parent body. I'm investigating the properties of the dust particles using orbital calculations and astronomical data.

Interplanetary Dust Particles / Debris disks

bottom of page